Tail Mutual Exclusivity and Tail-VaR Lower Bounds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VaR–implied Tail–correlation Matrices

Empirical evidence suggests that asset returns correlate more strongly in bear markets than conventional correlation estimates imply. We propose a method for determining complete tail–correlation matrices based on Value–at–Risk (VaR) estimates. We demonstrate how to obtain more efficient tail–correlation estimates by use of overidentification strategies and how to guarantee positive semidefinit...

متن کامل

Tail bounds via generic chaining

Abstract. We modify Talagrand’s generic chaining method to obtain upper bounds for all p-th moments of the supremum of a stochastic process. These bounds lead to an estimate for the upper tail of the supremum with optimal deviation parameters. We apply our procedure to improve and extend some known deviation inequalities for suprema of unbounded empirical processes and chaos processes. As an ap...

متن کامل

Tail Bounds for Stochastic Approximation

Stochastic-approximation gradient methods are attractive for large-scale convex optimization because they offer inexpensive iterations. They are especially popular in data-fitting and machine-learning applications where the data arrives in a continuous stream, or it is necessary to minimize large sums of functions. It is known that by appropriately decreasing the variance of the error at each i...

متن کامل

Optimal Bounds on Tail Probabilities

The required number of references for the reorganization process under CS to approach the optimum within 1 + : The ratio between a Chebyshev-based bound and the stopping point in Theorem 7. The required number of references for the reorganization process under CS to approach the optimum within 1 + : The ratio between a Hoeeding-based bound and the stopping point in (1.22). 22 The Laplace transf...

متن کامل

VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles∗

This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple versio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2015

ISSN: 1556-5068

DOI: 10.2139/ssrn.2572930